Vector Pipeline™

Customer Meeting
October 1, 2015
Overview

• Welcome – Pete Cianci
• Vector Update – Matt Malinowski
• ICF International – Kevin Petak
• Discussion
Matt Malinowski
Manager, Market Development
Vector Update

Gas Day / NAESB
Operations
System Flows
New Projects
Post 2017 - Nexus & Rover
Market Opportunities
Gas Day Changes
NAESB 3.0
Gas-Electric Coordination

- Gas nomination schedule changing to improve coordination of natural gas and electricity markets.
- FERC Order 809: NAESB 2.0 with Gas Day Changes and 2.0 Minor Corrections
- NAESB 2.0 went into effect December 2012
Order 809

- Effective for April 1, 2016 Gas Day Flow
- Gas Day start remains at 9 a.m.
- One additional intraday cycle
- Tighter time frame to schedule each cycle
- Capacity Release timeline changed to accommodate new timing for gas day cycles
The New Gas Day

(Central Clock Time)

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Current 9 a.m. Gas Day Start</th>
<th>NEW 9 a.m. Gas Day Start</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nomination</td>
<td>Gas Flow</td>
</tr>
<tr>
<td>Timely</td>
<td>11:30 a.m.</td>
<td>9:00 a.m.</td>
</tr>
<tr>
<td>Evening</td>
<td>6:00 p.m.</td>
<td>9:00 a.m.</td>
</tr>
<tr>
<td>ID 1</td>
<td>10:00 a.m.</td>
<td>5:00 p.m.</td>
</tr>
<tr>
<td>ID 2</td>
<td>5:00 p.m.</td>
<td>9:00 p.m.</td>
</tr>
<tr>
<td>ID 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NAESB Version 3.0 Standards

• Published November 2014 but not yet approved by FERC. NOPR issued July 16.

• Comprehensive with all changes to date, including NAESB 2.1

• Location common codes eliminated and replaced with proprietary codes

• Behind-the-scenes data set changes and clean-up for language consistency
Operations
2015 Compressor Work Completed

- Springville #2 – entire control system replaced January, 2015
- No Firm was impacted
2016 Proposed Work

• Highland station – both engines due for replacement
• Highland #1 – replace entire control system – (2-3 week outage)
• New SCADA system
• Continued electronic upgrades
• No impact to Firm expected
System Flows
Scheduled Deliveries
(Includes Longhaul, Shorthaul, Backhaul and Segmentation)

Average Dth/Day

Canada
U.S.
Long Haul Capacity

Vector Pipeline™
This past winter was not as dynamic as the prior.....
Winter 2013/14
(Polar Vortex)

Winter 2013/14 System Peak – 2,340 MDth
January 7, 2014

Storage
Wash 10
Bluewater
DTE Gas
Rec - 1793

Guardian
Del - 352

NIPSCO
Del - 137

Jackson
Del - 80

DTE Gas
Del - 433

Consumers
Del - 107

St. Clair
Del - 1231

APL/NBPL
Rec - 547

195
58
22
455
Guardian Deliveries - Winter
(Physical Volumes - MDth/d)

Winter 2010/11
Winter 2011/12
Winter 2012/13
Winter 2013/14
Winter 2014/15

Peak
Average
Guardian Receipts - Summer
(Physical Volumes - MDth/d)

- Peak
- Average

<table>
<thead>
<tr>
<th>Year</th>
<th>Peak</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer 2011</td>
<td>100,000</td>
<td>100,000</td>
</tr>
<tr>
<td>Summer 2012</td>
<td>200,000</td>
<td>200,000</td>
</tr>
<tr>
<td>Summer 2013</td>
<td>300,000</td>
<td>300,000</td>
</tr>
<tr>
<td>Summer 2014</td>
<td>400,000</td>
<td>400,000</td>
</tr>
<tr>
<td>Summer 2015</td>
<td>500,000</td>
<td>500,000</td>
</tr>
</tbody>
</table>
• Station capacities: Crown Point – 600 MMcf/d; LaPorte – 150 MMcf/d
BTU Content

(Btu/cf @ St. Clair)

<table>
<thead>
<tr>
<th>Year</th>
<th>Btu/cf</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>1015</td>
</tr>
<tr>
<td>2011</td>
<td>1015</td>
</tr>
<tr>
<td>2012</td>
<td>1026</td>
</tr>
<tr>
<td>2013</td>
<td>1035</td>
</tr>
<tr>
<td>2014</td>
<td>1045</td>
</tr>
</tbody>
</table>

- Ethane rejection remains an industry-wide phenomenon
New Facilities
New Interconnect

• Greenfield South
 – New delivery in Ontario for a 300MW Power Plant
 – Vector hot tap tied-in Summer 2015
 – Commissioning planned 4th Q 2015
Potential Interconnects

• Chicago Markets – 2016 or 2017
 – Provides direct access to large LDC market

• New baseload powerplant – Indiana
 – 675 MW plant on PJM grid
 – Expected in-service 2018
 – Potential Future second phase
 • 675 MW into MISO
Post 2017
What’s new

- Nexus will be utilizing Vector’s system to transport gas from Milford & Belle River to Dawn.
- Rover will be utilizing Vector to transport gas from Livingston Co. to Dawn.
- Combined, both parties committed approximately 1.4 Bcf/d on Vector.
- Capacity was created from existing capacity by converting long-haul to short-haul capacity.
- No expansion is needed right now, but Vector is prepared to move forward with an expansion (post 2017) if there is market support.
- Vector is sold out of capacity to Dawn starting late 2017, once both projects are in-service.
Nexus Pipeline
The NEXUS Project – Developed Jointly by DTE Energy and Spectra Energy

NEXUS is supported by two strong, creditworthy sponsors – DTE and Spectra – that are firmly committed to the project.
• Great Lakes demand is anticipated to increase ~2.8 Bcf/d, driven by power generation

• Given its low-cost position on the gas supply stack, the Utica / Marcellus is poised to displace a significant amount of existing supply serving the Great Lakes market

Source: IHS CERA; DTE analysis
Project Scope

- Design Capacity: 1.5 Bcf/d
- ~250 miles of 36" pipe
- 130,000 HP with 4 compressor stations
- In-Service: November 2017
- CapEx: $2+ billion
- Multiple receipt and delivery points
NEXUS – Key Market Access

NEXUS Market Access

- **Michigan**
 - MichCon trading hub
 - DTE Gas
 - Consumers Energy
 - Storage (DTE Gas, Washington 10, Bluewater)

- **Ontario**
 - Dawn trading hub
 - Union Gas and Enbridge
 - Storage (Dawn and Tecumseh)

- **Vector**
 - Chicago area LDCs
 - Power generators

NEXUS provides access to:

- Deep and liquid trading hubs at Dawn and MichCon
- ~1 Tcf of working storage capacity
- Large direct purchase markets behind LDCs
NEXUS – Project Schedule

NEXUS Timeline

- **2013 – 2nd Qtr 2014**: Initial Project evaluation
- **3rd & 4th Qtr 2014**: Initial stakeholder contact and informational meetings
- **1st Qtr 2015**: FERC approves NEXUS Gas Transmission’s use of the Pre-Filing review process
- **2015**: FERC Scoping to determine environmental issues, Applicant stakeholder outreach efforts, issues resolution and Applicant preparation
- **4th Qtr 2015**: NEXUS Gas Transmission filing FERC Certificate Application
- **2016**: FERC and agency review, Additional stakeholder outreach efforts
- **4th Qtr 2016**: FERC determines whether to approve the Project
- **1st Qtr 2017**: NEXUS Gas Transmission anticipates FERC issuance of Notice to Proceed with Construction Activities
- **4th Qtr 2017**: NEXUS Gas Transmission in-service

Key Milestones

- Oct. 2014 – Held 9 voluntary informational sessions in OH and MI
- Jan. 2015 – FERC accepted project use of pre-filing process
- Jan. 2015 – Submitted first drafts of Resource Reports 1 & 10
- Feb. 2015 – Held 10 Open Houses in OH and MI
- Apr.-May 2015 – FERC held 6 scoping meetings in OH and MI
- Jun. 2015 – Submitted draft Resource Reports
- Q4 2015 – Filing FERC 7C application

www.nexussgastransmission.com
Rover Pipeline LLC
ROVER PIPELINE

711 miles of pipeline; initial forward haul capacity of 3.25 Bcf/day of capacity
ROVER PIPELINE – MARKETS

Michigan Markets: Consumers, MichCon, Vector

Union Gas Dawn Hub

Midwest Hub: ANR, Panhandle

Trunkline Zone 1A

Initial 3.8 Bcf/day of delivery point capacity
ROVER PIPELINE
MAJOR ACCOMPLISHMENTS

• FERC certificate application filed February 20th; anticipating Order by 1st Quarter 2016.
• Long-lead time materials being procured.
 • 100% of major materials purchased at or below budget.
 • Scheduled to be delivered by end of the year.
• Surveys complete.
• ROW on budget and on schedule.

Rover pipe arriving at the Port of Cleveland
Market Opportunities
Capacity Available
Chicago to Dawn

• December 2015 through May 2017:
 • Dec 2015: 290,000 dth/d
 • April 2016: 289,811 dth/d
 • Nov 2016: 417,200 dth/d
 • Dec 2016: 502,200 dth/d
 • April 2017: 528,628 dth/d

• After June 1, 2017 all capacity to Dawn is reserved
Zone 1 Capability
Market Opportunities
for Chicago Supply

Current
- Joliet
- 200 MDth/d winter
- Crown Point

Future
- Joliet
- 400 – 600 MDth/d annually
- Chicago LDC
- Crown Point
Joliet to Milford – 2018
Chicago Supply to City Gates

Joliet ~250 MDth/d Rover Consumers Hartland
Milford Junction DTE Gas & Nexus
Flow Direction at Compressor Stations

- Washington, Highland and Athens have bi-directional capability
- Springville Station can be modified if required
Potential to Expand

Expansion Facilities
- 200-600 MDth/d Incremental Capacity
- Lease Line Loop / Loop in Canada
- Washington Station Compressor addition
Weather Predictions
Vector Pipeline™

Questions
ICF’s Base Case Views for Vector Pipeline
Based on ICF’s Natural Gas Strategic: Q3 (July) 2015 Base Case

Vector Customer Meeting
October 1, 2015

Kevin Petak
Vice President
ICF Fairfax, VA
703-218-2753

kevin.petak@icfi.com
Disclaimer

Your use of Natural Gas - Strategic information (this Presentation), offered as a subscription service developed by ICF Resources LLC (“ICF”), is governed by the cost, schedule, terms and conditions contained in ICF’s Subscription Form. For your convenience, a partial summary of those terms is presented below:

Warranties and Representations. ICF shall endeavor to provide all deliverables, including without limitation the Report and any associated services, consistent with standard practices in a professional manner. ICF MAKES NO WARRANTIES, HOWEVER, EXPRESS OR IMPLIED (INCLUDING WITHOUT LIMITATION ANY WARRANTIES OR MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE), AS TO THE REPORT OR OTHER DELIVERABLES OR ASSOCIATED SERVICES. Specifically but without limitation, ICF makes no warranty or guarantee regarding the accuracy of any forecasts, estimates, or analyses, or that such work products will be accepted by any legal or regulatory body.

Waivers. The Subscriber hereby waives any claim at any time, whether now or in the future, against ICF, its officers, directors, employees or agents arising out of or in connection with the rendering of Reports and services by ICF under this Agreement. In no event whatsoever shall ICF, its officers, directors, employees, or agents be liable to the Subscriber or any third party for amounts which, in the aggregate, would exceed the amount of the fee actually received by ICF hereunder.

Confidential Information. Subscriber agrees that the information in the Report is ICF’s Confidential Information and constitutes and contains valuable trade secret information of ICF. Disclosure of any information contained in the Report by the Subscriber to anyone other than employees of the Subscriber is prohibited. Subscriber will take all necessary precautions to prevent the Report from being available to unauthorized persons and Subscriber will instruct and make agreements with its employees to prevent any unauthorized access or unauthorized use of the Report. Subscriber will not copy, lend, sell, or otherwise transfer the Report (or parts thereof) to any unauthorized person. The Subscription to use the Report is a limited license for the Subscriber to access and use the information contained therein. ICF retains all intellectual property rights to the Report and information contained therein, including without limitation all copyright rights and trade secret rights in such information and the methods and processes used to derive and present such information.
Contents

- Macro Market Trends
- Pipeline Flow and Basis Results Relevant to Vector Pipeline
- Conclusions
By 2035, U.S. and Canadian gas consumption is projected to increase by nearly 18 Tcf (48 Bcfd), versus today’s level, exhibiting an average growth rate of roughly 2.1% per year.

- Roughly 46% of the growth comes from the power sector, which grows to nearly 18 Tcf (48 Bcfd) by 2035.

Gas exports also create significant demand growth.

- LNG exports reach 5.4 Tcf (14.7 Bcfd) by 2025.
- Mexican Exports grow to 2.4 Tcf (6.7 Bcfd) by 2035.
Projected Exports

 - ICF’s current projection assumes U.S. LNG exports reach 12.6 Bcf/d by 2025, up 3.5 Bcf/d (relative to ICF’s Q2 projection), primarily due to higher assumed Gulf Coast exports.
 - LNG exports from British Columbia reach 2.1 Bcf/d, the same as in ICF’s Q2 projection.
- U.S. exports to Mexico will continue to grow, driven by increases in U.S. production and growth in Mexican gas use.
 - Mexican gas demand is being driven by replacement of oil-fired generation.

* Carib Energy is a small facility, with planned exports of less than 0.1 Bcf/d.
Projected Electric Generation

- Electric load increases at a rate of about 1.1% per year.
- Gas fired generation will continue to gain market share.
 - Coal and nuclear plant retirements and the addition of new natural gas capacity drive this increase as a response to the following assumptions:
 - MATS;
 - Federal carbon program;
 - Assumed 60-year life span for most U.S. nuclear units.
 - While renewable generation continues to grow, it requires support from a fast dispatch source for back up, such as gas, which could increase pressure on gas infrastructure.
Regional Demand Across the U.S.

- Regional growth in gas consumption is primarily due to increased gas use for electric generation.
- The largest increase occurs in the South Atlantic region, with 2.4 TCF of growth in annual demand.
- Significant growth in the Mid-Atlantic and East North Central regions, mostly driven by coal plant retirement.
Regional Demand Across Canada

- Consumption growth in Western Canada is primarily driven by increased gas use for oil sands development.
 - Annual oil sands gas use is expected to increase by roughly 1 Tcf by 2035, but lower oil prices pose a risk for this development.
- In 2014, Ontario retired the last of its coal-fired power plants.
 - Future growth in gas demand comes from recovery of industrial demand and incremental growth in power demand (due to both load growth and nuclear plant retirements).
Projected Gas Supply

- Total gas production increases by 2.1% per year, primarily from shale gas production, which grows by 4.2% annually.
 - By 2020, shale gas production accounts for about two-thirds of all U.S. and Canada gas production.
- Other unconventional gas production remains fairly constant:
 - Tight gas increases modestly while CBM declines.
- Conventional production continues to decline by 3.0% annually.
- Offshore production exhibits modest increases, mostly toward the end of the analysis period.
Total U.S. and Canada shale gas production is projected to increase by more than 90% from about 42 Bcfd in 2014 to about 80 Bcfd in 2025.

The Marcellus and Utica Shale account for roughly 50 percent of the incremental production growth from shale formations.

Major growth is also expected from Western Canadian shale plays (the Montney, Horn River, Cordova & Liard), which grow to nearly 13 Bcfd by 2025 from their current level of roughly 4 Bcfd, but lower oil prices pose a greater risk for development of these resources.

*Haynesville values shown here include production from other shales in the vicinity, e.g., the Bossier Shale.
Projected Natural Gas Prices

Historical

ICF Projected

Perfect Storm Leads to Low Gas Prices

Cold Winter Pops 2014 Gas Price

Sluggish Market Growth Keeps Prices Low

LNG Exports Ramp Up

Stable Prices – Market Growth and Supply Growth Synchronized

Nuclear Retirements

Annual Average Henry Hub Price

2014$/MMBtu

2005 2010 2015 2020 2025 2030 2035
Projected Basis for a few Select Gas Transportation Paths (Nominal $ per MMBtu)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicago minus Marcellus</td>
<td>(0.03)</td>
<td>0.00</td>
<td>0.20</td>
<td>2.23</td>
<td>1.46</td>
<td>0.94</td>
<td>1.15</td>
<td>1.64</td>
</tr>
<tr>
<td>Chicago minus AECO</td>
<td>0.44</td>
<td>0.44</td>
<td>0.78</td>
<td>1.51</td>
<td>0.70</td>
<td>0.71</td>
<td>0.81</td>
<td>0.94</td>
</tr>
<tr>
<td>Chicago minus Rockies</td>
<td>0.30</td>
<td>0.17</td>
<td>0.20</td>
<td>1.21</td>
<td>0.40</td>
<td>0.33</td>
<td>0.32</td>
<td>0.46</td>
</tr>
<tr>
<td>Chicago minus Henry Hub</td>
<td>0.13</td>
<td>0.10</td>
<td>0.13</td>
<td>1.24</td>
<td>0.16</td>
<td>(0.05)</td>
<td>(0.25)</td>
<td>(0.53)</td>
</tr>
<tr>
<td>Henry Hub minus Marcellus</td>
<td>(0.15)</td>
<td>(0.10)</td>
<td>0.07</td>
<td>0.99</td>
<td>1.30</td>
<td>0.99</td>
<td>1.40</td>
<td>2.17</td>
</tr>
<tr>
<td>Dawn minus Chicago</td>
<td>0.27</td>
<td>0.23</td>
<td>0.22</td>
<td>0.64</td>
<td>0.24</td>
<td>0.19</td>
<td>0.20</td>
<td>0.25</td>
</tr>
<tr>
<td>Dawn minus Henry Hub</td>
<td>0.40</td>
<td>0.33</td>
<td>0.35</td>
<td>1.88</td>
<td>0.40</td>
<td>0.14</td>
<td>(0.05)</td>
<td>(0.28)</td>
</tr>
<tr>
<td>Dawn minus Marcellus</td>
<td>0.25</td>
<td>0.23</td>
<td>0.43</td>
<td>2.87</td>
<td>1.70</td>
<td>1.13</td>
<td>1.35</td>
<td>1.89</td>
</tr>
</tbody>
</table>
Marcellus and Utica Gas Production – A Big Factor in Vector Pipeline’s Future

- Dry gas production from Marcellus rises from an average of 15 Bcf/d in 2014 to over 29 Bcf/d in 2025, an average annual growth rate of 7%. Utica production rises from about 1 Bcf/d in 2014 to over 6 Bcf/d in 2020, an average annual growth rate of about 20%.

- Growth slows after 2020, as depletion from existing wells becomes more pronounced at the higher levels of production.

- Production from the area’s conventional production continues to decline.

<table>
<thead>
<tr>
<th></th>
<th>Marcellus Shale</th>
<th>Utica Shale</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>980</td>
<td>0</td>
</tr>
<tr>
<td>2011</td>
<td>1,841</td>
<td>12</td>
</tr>
<tr>
<td>2012</td>
<td>1,532</td>
<td>89</td>
</tr>
<tr>
<td>2013</td>
<td>2,235</td>
<td>305</td>
</tr>
<tr>
<td>2014</td>
<td>2,006</td>
<td>390</td>
</tr>
<tr>
<td>2015</td>
<td>1,889</td>
<td>399</td>
</tr>
<tr>
<td>2016</td>
<td>1,993</td>
<td>498</td>
</tr>
<tr>
<td>2017</td>
<td>2,114</td>
<td>584</td>
</tr>
<tr>
<td>2018</td>
<td>2,190</td>
<td>601</td>
</tr>
<tr>
<td>2019</td>
<td>2,292</td>
<td>613</td>
</tr>
<tr>
<td>2020</td>
<td>2,333</td>
<td>614</td>
</tr>
<tr>
<td>2021</td>
<td>2,217</td>
<td>568</td>
</tr>
<tr>
<td>2022</td>
<td>2,261</td>
<td>561</td>
</tr>
<tr>
<td>2023</td>
<td>2,199</td>
<td>543</td>
</tr>
<tr>
<td>2024</td>
<td>2,160</td>
<td>536</td>
</tr>
<tr>
<td>2025</td>
<td>2,085</td>
<td>521</td>
</tr>
</tbody>
</table>
Production and Demand for the North Central Consuming Area Home to Vector Pipeline
(Includes MN, WI, IA, IL, MO, MI, IN, TN, KY & Western OH)

- Area has little indigenous production and has historically relied on imports from elsewhere, mostly the Gulf Coast and Western Canada, to satisfy its demand.

- Even though demographic changes are not favorable for the area’s gas and electric load growth, there is likely to be modest growth in gas-fired generation as a result of coal plant retirements.
 - Gas use in the power sector will rise by 1-2 Bcf/d through 2035, yielding total gas use that is 5 to 10 percent above today’s level.
 - About 4.5 GW of coal plant retirements in Michigan over the next decade.

- **Annual Indigenous Supply (Average Bcf/d)**

- **Annual Demand (Average Bcf/d)**

* Other includes pipeline fuel, lease and plant gas use
Production and Demand for Eastern Canada
(Includes ON, QC & Maritime Provinces)

- Eastern Canada’s demand is likely to grow robustly, due to incremental gas-fired generation that replaces declines in nuclear generation that result from nuclear plant maintenance, refurbishment, and retirements.

- The relatively small amount of supply from Eastern Canada will continue to decline, and the area will become even more reliant on pipeline imports.
 - Historically, the area has mostly relied on Western Canada for its gas supply, but that dynamic has been changing with Marcellus production growth.

![Graph showing annual indigenous supply and demand for Eastern Canada from 2010 to 2035.](image)

* Other includes pipeline fuel, lease and plant gas use.
Flows from the Marcellus and Utica

Nexus/Rover could add 5 Bcf/d

Nearly 3 Bcf/d on REX

3+ Bcf/d of new capacity to Ontario and the Northeast

2+ Bcf/d of Transco reversals

5+ Bcf/d of new capacity to Virginia and the Carolinas

5+ Bcf/d of additional reversals to the Gulf Coast

ICF’s Base Case projects 17 to 18 Bcf/d of new pipeline capacity from the Marcellus & Utica after Q3 2015

© 2015 ICF International. All rights reserved.
Changes in Pipeline Flows Over the Next Decade

- Robust Marcellus gas production growth displaces flows to the Northeast U.S..
- Marcellus gas flows into U.S. Midwest and Eastern Canada.
- Declining conventional production in Alberta and increasing gas demand for oil sands development and LNG exports from British Columbia reduce eastward flows into Ontario.
- Alliance Pipeline is likely to benefit from increased developed of “wet” shale gas resources in Western Canada.
Changes in Pipeline Flows In the Longer Term

- Trends in the longer term are similar to those through 2025.
Gas Supply Mix for the U.S. Midwest and Eastern Canada

<table>
<thead>
<tr>
<th>U.S. Midwest</th>
<th>2010</th>
<th>2015</th>
<th>2025</th>
<th>2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western Canada</td>
<td>31%</td>
<td>24%</td>
<td>29%</td>
<td>27%</td>
</tr>
<tr>
<td>Marcellus</td>
<td>0%</td>
<td>11%</td>
<td>30%</td>
<td>37%</td>
</tr>
<tr>
<td>Midcontinent/Rockies</td>
<td>46%</td>
<td>43%</td>
<td>36%</td>
<td>30%</td>
</tr>
<tr>
<td>Gulf Coast/Other</td>
<td>23%</td>
<td>22%</td>
<td>5%</td>
<td>6%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eastern Canada</th>
<th>2010</th>
<th>2015</th>
<th>2025</th>
<th>2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western Canada</td>
<td>60%</td>
<td>44%</td>
<td>34%</td>
<td>34%</td>
</tr>
<tr>
<td>Marcellus</td>
<td>0%</td>
<td>17%</td>
<td>48%</td>
<td>52%</td>
</tr>
<tr>
<td>Midcontinent/Rockies</td>
<td>19%</td>
<td>19%</td>
<td>12%</td>
<td>9%</td>
</tr>
<tr>
<td>Gulf Coast</td>
<td>21%</td>
<td>20%</td>
<td>6%</td>
<td>5%</td>
</tr>
</tbody>
</table>

Marcellus Deliveries Directly to End-Users (Bcfd)

<table>
<thead>
<tr>
<th></th>
<th>2010</th>
<th>2015</th>
<th>2025</th>
<th>2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marcellus Area</td>
<td>1.0</td>
<td>5.0</td>
<td>7.4</td>
<td>9.6</td>
</tr>
<tr>
<td>Northeast</td>
<td>2.2</td>
<td>9.2</td>
<td>12.4</td>
<td>13.9</td>
</tr>
<tr>
<td>Southeast</td>
<td>0.2</td>
<td>2.3</td>
<td>9.1</td>
<td>9.9</td>
</tr>
<tr>
<td>Gulf Coast</td>
<td>0.0</td>
<td>0.2</td>
<td>2.7</td>
<td>2.6</td>
</tr>
<tr>
<td>Midwest</td>
<td>0.0</td>
<td>1.3</td>
<td>4.2</td>
<td>4.2</td>
</tr>
<tr>
<td>Eastern Canada</td>
<td>0.0</td>
<td>0.6</td>
<td>2.4</td>
<td>2.4</td>
</tr>
<tr>
<td>Total</td>
<td>3.4</td>
<td>18.7</td>
<td>38.1</td>
<td>42.6</td>
</tr>
</tbody>
</table>
Vector Pipeline
Eastward flows along Vector’s Mainline exhibit a modest decline as Marcellus deliveries into the U.S. Midwest increase.

However, flow is supported by Alliance deliveries and REX flows into Illinois.
Projected Deliveries from Vector Pipeline at St. Clair

- Projected deliveries at St. Clair increase by about 300 MMcfd over the longer term supported by increased receipts from Rover/Nexus.
- Absent expansion, flows may be limited by pipeline capacity.
Projected deliveries at all delivery points are estimated to rise from an annual average of roughly 1,100 MMcfd to over 1,900 MMcfd.

Deliveries supported by incremental supplies from the Marcellus and continued receipts from Alliance Pipeline and other historical sources.
Basis is modestly lower in the near term as incremental gas from the Marcellus displaces a modest amount of flow along the mainline.

- Direct deliveries from Niagara into Ontario contribute to this result. However, Alliance receipts limit the reduction.

Basis recovers as Marcellus receipts directly into Vector Pipeline increase.
Conclusions

- Marcellus production growth is robust, significantly penetrating U.S. Midwest and Eastern Canada markets – Marcellus gas is a significant positive factor for Vector Pipeline.

- Despite Marcellus penetration into the U.S. Midwest, Alliance flows remain strong as the pipeline is positioned well to capture liquids-rich gas from the Montney and Duverney – the impact of Marcellus gas on Alliance deliveries to Vector Pipeline is not significant.

- Market growth due to coal and nuclear plant retirements bolsters gas use in areas relevant to Vector Pipeline.

- Vector Pipeline deliveries rise from an annual average of roughly 1,100 MMcfd today to about 1,900 MMcfd in the longer term.
 - Deliveries at St. Clair rise by about 300 MMcfd and deliveries within Michigan rise by about 500 MMcfd.

- Basis from Chicago to Dawn remains between 20 and 30 cents per MMBtu over the next 10 to 20 years.
THANK-YOU
Discussion
Vector Pipeline™

Thank You